Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Braz. arch. biol. technol ; 62(spe): e19190007, 2019. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1055429

RESUMO

Abstract The electric vehicle (EV) is not a recent invention. Between the end of the XIX century and the beginning of the XX century, most motor vehicles were electric, due to their superior reliability and cleanliness, compared to that of vehicles driven by internal combustion engines (ICE). However, with the development of ICEs and the reduction of their price, electric cars were forgotten. Only almost a century later, they returned in the market due to a significant increase in fossil fuels prices, as well as to a growing environmental concern. EVs present a number of advantages over ICE vehicles: they are simpler and require less use and replacement of parts, resulting in lower maintenance costs; moreover, they do not release pollutants into the environment. However, their production cost is still much higher than that of ICE vehicles. In order to verify the possibility of converting a conventional vehicle into an electric one at a reasonable cost, achieving a good performance and a good kWh/km ratio, an ICE-powered Mercedes-Benz Class A 190 was converted into an EV. The results of several tests indicate that the conversion is feasible, as the car reached an average travelling cost of 0.16 R$/km, assuming a price for the energy of 0.63 R$/kWh. Moreover, this cost could be as low as zero if solar radiation is utilized to generate electricity through photovoltaic panels, which is an even more environmentally sustainable solution..


Assuntos
Automóveis , Clima , Energia Fotovoltaica , Combustíveis Fósseis , Desenvolvimento Sustentável
2.
Braz. arch. biol. technol ; 61(spe): e18000530, 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-974143

RESUMO

ABSTRACT The gradual shifting of the energy matrix to renewable sources is one of the main global strategies for sustainable development. According to studies, the use of electric energy by automobiles would lead to a reduction in gasoline consumption of 40.7% in 2031, accompanied by an increase in electricity consumption of 42.1% in relation to official projections. However, the gradual and constant dissemination and use of electric vehicles, a new paradigm emerges, which is the need to supply the energy demand of this new charge in the electric system The use of solar radiation to generate electricity to meet this new demand presents a sustainable alternative. From these questions, a structure was designed with the installation of a photovoltaic solar panel linked to the use of electric vehicles, analyzing estimated values of energy production and avoided emissions of CO2, compared to the average consumption of several models to cover 21,900km per year. The results show that the Renault Twizy was the only model whose consumption was below the energy production of the projected photovoltaic system. In contrast, all models had a positive balance in the estimates of avoided CO2, forming an environmentally sustainable solution.


Assuntos
Automóveis , Consumo de Energia , Energia Fotovoltaica , Crescimento Sustentável
3.
Braz. arch. biol. technol ; 61(spe): e18000520, 2018. graf
Artigo em Inglês | LILACS | ID: biblio-974158

RESUMO

ABSTRACT Installations of photovoltaic systems connected or not to the electrical network have become increasingly popular, but it is often carried out by unqualified people using low quality components. The present study aims to describe the methodology adopted for the protection of grid connected photovoltaic systems (GCPVS) and the implications caused by their lack. Photovoltaic modules are typically installed in galvanized, painted, stainless aluminum or steel structures, which must be connected to a common ground, as these structures and any other components of the system could be energized by the photovoltaic array and may cause serious injuries or even death during routine maintenance, these fatalities can still result in ramifications for the entire industry, with millions of dollars in liability (for death or injury), negative publicity for GCPVS, and increased complications in obtaining licenses. Also, its components must be of good quality and the systems of protection must be well dimensioned and correctly installed, in order to avoid fire and electric damages, with reduction of possible damages in cases of short circuits.


Assuntos
Aterros de Segurança , Fatores de Proteção , Instalação Elétrica , Energia Fotovoltaica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...